Tuesday, June 24, 2014

June 24, 2014 NASA Sets New Dates, Media Coverage for Saucer-Shaped Test Vehicle Flight


A saucer-shaped test vehicle holding equipment for landing large payloads on Mars is shown in the Missile Assembly Building at the US Navy's Pacific Missile Range Facility in Kaua‘i, Hawaii. The vehicle, part of the Low-Density Supersonic Decelerator project, will test an inflatable decelerator and a parachute at high altitudes and speeds over the Pacific Missile Range this June. A balloon will lift the vehicle to high altitudes, where a rocket will take it even higher to the top of the stratosphere at several times the speed of sound. This image was taken during a "hang-angle" measurement, in which engineers set the vehicle's rocket motor to the appropriate angle for the high-altitude test. The nozzle and the lower half of the Star-48 solid rocket motor are the dark objects seen in the middle of the image below the saucer.

Image Credit: NASA/JPL-Caltech


NASA's Low-Density Supersonic Decelerator (LDSD) project plans to fly its rocket-powered, saucer-shaped landing technology test vehicle into near-space from the U.S. Navy's Pacific Missile Range Facility (PMRF) on Kauai, Hawaii later this week.

NASA has identified five potential launch dates for the high-altitude balloon carrying the LDSD experiment: June 28, 29, 30, July 1 and 3. The launch window for Saturday, June 28 extends from 8:15--9:30 a.m. Hawaii Standard Time (2:15-3:30 p.m. EDT).

The test will be carried live via UStream and simulcast on NASA Television.

The vehicle originally was scheduled for its first test flight earlier in June, but unacceptable weather conditions prevented the launch.

On launch attempt days, journalists are invited to PMRF to watch the liftoff and flight. Journalists who did not previously acquire base clearance but would like to attend the event must arrange access in advance by contacting the U.S. Navy's Pacific Missile Range Facility PAO, Stefan Alford, at 808-482-0036 or stefan.alford@navy.mil by 11 a.m. Hawaii Standard Time on Thursday, June 26. Valid media credentials are required.

Reporters who have previously received access clearance from the U.S. Navy for the LDSD launch also are invited to return, but must contact Alford by 11 a.m. on Friday, June 27, to have their access to the facility reactivated.

Reporters must arrive at the PMRF main gate, each balloon launch attempt day, no later than 7 a.m. for escort onto the base. Journalists should follow the LDSD mission website for daily launch window dates and times. Reporters will be escorted off the base following the balloon launch.

Decisions to attempt launch of the LDSD test will be made the day before each launch opportunity date. NASA will issue launch advisories via the mission website, media advisories and on Twitter at:

https://twitter.com/NASA_Technology

and

https://twitter.com/NASA

NASA will stream live video of the test via UStream at:

http://www.ustream.tv/nasajpl2

The video may be intermittent based on test activities. Reporters should consult the LDSD website for real-time updates of the test. NASA plans on providing edited supporting video of the test the day after flight.

For NASA TV streaming video, schedules and downlink information, visit:

http://www.nasa.gov/nasatv

After the balloon reaches an altitude of 120,000 feet, the rocket-powered test vehicle will be dropped. Seconds later, its motor will fire, carrying it to 180,000 feet and as fast as about Mach 3.8. LDSD carries several onboard cameras.

Monday, June 23, 2014

June 23, 2014 NASA’s Mars Curiosity Rover Marks First Martian Year with Mission Successes


Image Credit: NASA/JPL


NASA’s Mars Curiosity rover will complete a Martian year -- 687 Earth days -- on June 24, having accomplished the mission's main goal of determining whether Mars once offered environmental conditions favorable for microbial life.

One of Curiosity's first major findings after landing on the Red Planet in August 2012 was an ancient riverbed at its landing site. Nearby, at an area known as Yellowknife Bay, the mission met its main goal of determining whether the Martian Gale Crater ever was habitable for simple life forms. The answer, a historic "yes," came from two mudstone slabs that the rover sampled with its drill. Analysis of these samples revealed the site was once a lakebed with mild water, the essential elemental ingredients for life, and a type of chemical energy source used by some microbes on Earth. If Mars had living organisms, this would have been a good home for them.

Other important findings during the first Martian year include:

-- Assessing natural radiation levels both during the flight to Mars and on the Martian surface provides guidance for designing the protection needed for human missions to Mars.

-- Measurements of heavy-versus-light variants of elements in the Martian atmosphere indicate that much of Mars' early atmosphere disappeared by processes favoring loss of lighter atoms, such as from the top of the atmosphere. Other measurements found that the atmosphere holds very little, if any, methane, a gas that can be produced biologically.

-- The first determinations of the age of a rock on Mars and how long a rock has been exposed to harmful radiation provide prospects for learning when water flowed and for assessing degradation rates of organic compounds in rocks and soils.

Curiosity paused in driving this spring to drill and collect a sample from a sandstone site called Windjana. The rover currently is carrying some of the rock-powder sample collected at the site for follow-up analysis.

"Windjana has more magnetite than previous samples we've analyzed," said David Blake, principal investigator for Curiosity's Chemistry and Mineralogy (CheMin) instrument at NASA’s Ames Research Center, Moffett Field, California. "A key question is whether this magnetite is a component of the original basalt or resulted from later processes, such as would happen in water-soaked basaltic sediments. The answer is important to our understanding of habitability and the nature of the early-Mars environment."

Preliminary indications are that the rock contains a more diverse mix of clay minerals than was found in the mission's only previously drilled rocks, the mudstone targets at Yellowknife Bay. Windjana also contains an unexpectedly high amount of the mineral orthoclase, This is a potassium-rich feldspar that is one of the most abundant minerals in Earth's crust that had never before been definitively detected on Mars.

This finding implies that some rocks on the Gale Crater rim, from which the Windjana sandstones are thought to have been derived, may have experienced complex geological processing, such as multiple episodes of melting.

"It's too early for conclusions, but we expect the results to help us connect what we learned at Yellowknife Bay to what we'll learn at Mount Sharp," said John Grotzinger, Curiosity Project Scientist at the California Institute of Technology, Pasadena. "Windjana is still within an area where a river flowed. We see signs of a complex history of interaction between water and rock."

Curiosity departed Windjana in mid-May and is advancing westward. It has covered about nine-tenths of a mile (1.5 kilometers) in 23 driving days and brought the mission's odometer tally up to 4.9 miles (7.9 kilometers).

Since wheel damage prompted a slow-down in driving late in 2013, the mission team has adjusted routes and driving methods to reduce the rate of damage.

For example, the mission team revised the planned route to future destinations on the lower slope of an area called Mount Sharp, where scientists expect geological layering will yield answers about ancient environments. Before Curiosity landed, scientists anticipated that the rover would need to reach Mount Sharp to meet the goal of determining whether the ancient environment was favorable for life. They found an answer much closer to the landing site. The findings so far have raised the bar for the work ahead. At Mount Sharp, the mission team will seek evidence not only of habitability, but also of how environments evolved and what conditions favored preservation of clues to whether life existed there.

The entry gate to the mountain is a gap in a band of dunes edging the mountain's northern flank that is approximately 2.4 miles (3.9 kilometers) ahead of the rover's current location. The new path will take Curiosity across sandy patches as well as rockier ground. Terrain mapping with use of imaging from NASA's Mars Reconnaissance Orbiter enables the charting of safer, though longer, routes.

The team expects its will need to continually adapt to the threats posed by the terrain to the rover's wheels but does not expect this will be a determining factor in the length of Curiosity's operational life.

"We are getting in some long drives using what we have learned," said Jim Erickson, Curiosity Project Manager at NASA's Jet Propulsion Laboratory (JPL) in Pasadena, California. "When you're exploring another planet, you expect surprises. The sharp, embedded rocks were a bad surprise. Yellowknife Bay was a good surprise."

JPL manages NASA's Mars Science Laboratory Project for NASA's Science Mission Directorate at the agency’s headquarters in Washington, and built the project's Curiosity rover.

Friday, June 13, 2014

Father


And in the end we did admit
To the crimes we did not commit
After a beating, with the ring
That made you feel like a king

Nobody knows the full extent
Of wounds you caused and discontent
Or the number of time you went
To prostitutes, your best friends


At times I still feel the shame
Even to have to bear the same name
My love for reading you tried to kill
But a mind, you could not fill

You taught me how to find
The silence within my mind
Simply because we cannot speak
About the havoc you wreak


A flower that had never left
The heart so long bereft
Grew a little larger by the time
I met my mother, now so fine

The way you suppressed your wife
Left scars to last her life
You left us in time, or too late
Not missed by me, to date


We are free, you cannot touch us
We are free, you cannot hurt us
We are free, you cannot kill us
We are free…………………and you?

I know not why you wanted to hurt
Were you hurt yourself sometime?
I don’t know why you felt a king
Beating a child with a ring

I want to leave the hurt behind
In a lighted corner of my mind
Present but no more oppressive
Humble but no more submissive

I am a different person now
Leading my life, that is how
Living of the reading you tried to kill
Of the mind that my history did fill
With a skill


Tuesday, June 10, 2014

Scientist-World's Largest Egyptian Obelisk Not Human Origin | Neon Nettle

Scientist-World's Largest Egyptian Obelisk Not Human Origin | Neon Nettle

NASA Instruments Begin Science on European Spacecraft Set to Land on Comet

The Moon, Rosetta flyby
June 10, 2014

Three NASA science instruments aboard the European Space Agency's (ESA) Rosetta spacecraft, which is set to become the first to orbit a comet and land a probe on its nucleus, are beginning observations and sending science data back to Earth.

Launched in March 2004, Rosetta was reactivated January 2014 after a record 957 days in hibernation. Composed of an orbiter and lander, Rosetta’s objective is to arrive at comet 67P/Churyumov-Gerasimenko in August to study the celestial object up close in unprecedented detail and prepare for landing a probe on the comet's nucleus in November.

Rosetta’s lander will obtain the first images taken from a comet’s surface and will provide the first analysis of a comet's composition by drilling into the surface. Rosetta also will be the first spacecraft to witness at close proximity how a comet changes as it is subjected to the increasing intensity of the sun's radiation. Observations will help scientists learn more about the origin and evolution of our solar system and the role comets may have played in seeding Earth with water, and perhaps even life.

"We are happy to be seeing some real zeroes and ones coming down from our instruments, and cannot wait to figure out what they are telling us," said Claudia Alexander, Rosetta's U.S. project scientist at NASA's Jet Propulsion Laboratory (JPL) in Pasadena, California. "Never before has a spacecraft pulled up and parked next to a comet. That is what Rosetta will do, and we are delighted to play a part in such a historic mission of exploration."

Rosetta currently is approaching the main asteroid belt located between Jupiter and Mars,. The spacecraft is still about 300,000 miles (500,000 kilometers) from the comet, but in August the instruments will begin to map its surface.

The three U.S. instruments aboard the spacecraft are the Microwave Instrument for Rosetta Orbiter (MIRO), an ultraviolet spectrometer called Alice, and the Ion and Electron Sensor (IES). They are part of a suite of 11 science instruments aboard the Rosetta orbiter.

MIRO is designed to provide data on how gas and dust leave the surface of the nucleus to form the coma and tail that gives comets their intrinsic beauty. Studying the surface temperature and evolution of the coma and tail provides information on how the comet evolves as it approaches and leaves the vicinity of the sun.

Alice will analyze gases in the comet's coma, which is the bright envelope of gas around the nucleus of the comet developed as a comet approaches the sun. Alice also will measure the rate at which the comet produces water, carbon monoxide and carbon dioxide. These measurements will provide valuable information about the surface composition of the nucleus.

The instrument also will measure the amount of argon present, an important clue about the temperature of the solar system at the time the comet's nucleus originally formed more than 4.6 billion years ago.

IES is part of a suite of five instruments to analyze the plasma environment of the comet, particularly the coma. The instrument will measure the charged particles in the sun's outer atmosphere, or solar wind, as they interact with the gas flowing out from the comet while Rosetta is drawing nearer to the comet's nucleus.

NASA also provided part of the electronics package for the Double Focusing Mass Spectrometer, which is part of the Swiss-built Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) instrument. ROSINA will be the first instrument in space with sufficient resolution to be able to distinguish between molecular nitrogen and carbon monoxide, two molecules with approximately the same mass. Clear identification of nitrogen will help scientists understand conditions at the time the solar system was formed.

U.S. scientists are partnering on several non-U.S. instruments and are involved in seven of the mission's 21 instrument collaborations. NASA's Deep Space Network (DSN) is supporting ESA's Ground Station Network for spacecraft tracking and navigation.

Rosetta is an ESA mission with contributions from its member states and NASA. Rosetta's Philae lander is provided by a consortium led by the German Aerospace Center, Cologne; Max Planck Institute for Solar System Research, Göttingen; French National Space Agency, Paris; and the Italian Space Agency, Rome. JPL manages the U.S. contribution of the Rosetta mission for NASA's Science Mission Directorate in Washington. JPL also built the MIRO and hosts its principal investigator, Samuel Gulkis. The Southwest Research Institute (San Antonio and Boulder), developed the Rosetta orbiter's IES and Alice instruments, and hosts their principal investigators, James Burch (IES) and Alan Stern (Alice).

Friday, June 6, 2014

Neder-L: Toch weer problemen bij het eindexamen Nederlands

Neder-L: Toch weer problemen bij het eindexamen Nederlands: Door Marc van Oostendorp Ergens, hoog in een ivoren toren, zit het College voor Examens, de instelling die in Nederland verantwoordeli...

Thursday, June 5, 2014

Heat shield installed on Orion spacecraft


Engineers completed installing the heat shield on NASA’s Orion spacecraft ahead of its first trip to space in December. The flight test will send an uncrewed Orion 3,600 miles into space before returning it to Earth for the splashdown in the Pacific Ocean. The heat shield will help protect the Orion crew vehicle from temperatures of about 4,000 degrees Fahrenheit during its reentry into Earth’s atmosphere.

Image Credit: NASA/Daniel Casper


NASA and Lockheed Martin engineers have installed the largest heat shield ever constructed on the crew module of the agency's Orion spacecraft. The work marks a major milestone on the path toward the spacecraft's first launch in December.

"It is extremely exciting to see the heat shield in place, ready to do its job," said Mark Geyer, Orion Program manager at NASA's Johnson Space Center in Houston. "The heat shield is such a critical piece, not just for this mission, but for our plans to send humans into deep space."

The heat shield is made of a coating called Avcoat, which burns away as it heats up in a process called ablation to prevent the transfer of extreme temperatures to the crew module. The Avcoat is covered with a silver reflective tape that protects the material from the extreme cold temperatures of space.

Orion’s flight test, or Exploration Flight Test-1, will provide engineers with data about the heat shield's ability to protect Orion and its future crews from the 4,000-degree heat of reentry and an ocean splashdown following the spacecraft’s 20,000-mph reentry from space.

Data gathered during the flight will inform decisions about design improvements on the heat shield and other Orion systems, and authenticate existing computer models and new approaches to space systems design and development. This process is critical to reducing overall risks and costs of future Orion missions -- missions that will include exploring an asteroid and Mars.

Orion's flight test also will provide important data for the agency’s Space Launch System (SLS) rocket and ocean recovery of Orion. Engineers at NASA’s Marshall Space Flight Center in Huntsville, Alabama, have built an advanced adapter to connect Orion to the United Launch Alliance Delta IV Heavy rocket that will launch the spacecraft during the December test. The adapter also will be used during future SLS missions. NASA’s Ground Systems Development and Operations Program, based at Kennedy Space Center in Florida, will recover the Orion crew module with the U.S. Navy after its splashdown in the Pacific Ocean.

The heat shield was manufactured at Lockheed Martin's Waterton Facility near Denver. Construction was completed at Textron Defense Systems near Boston before the heat shield was shipped to the Operations and Checkout Building at Kennedy, where Orion is being assembled.

In the coming months, the Orion crew and service modules will be joined and put through functional tests before the spacecraft is transported to Kennedy’s Payload Hazardous Servicing Facility for fueling. The spacecraft then will be transferred to the Launch Abort System (LAS) Facility to be connected to the LAS before making the journey to Cape Canaveral’s Space Launch Complex 37 for pad integration and launch operations.
Source: NASA
For more information on Orion, visit:

http://www.nasa.gov/orion